Seo-friends.ru

Большая стройка
28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Динамическая вязкость цементного раствора

Рекомендации по креплению обсадных колонн , страница 5

1. Динамическая вязкость цементных растворов находится в пределах от 2 до 30 Пуаз, причем, цементные растворы, приготовленные как на пресной, так и на соленой воде затворения с добавкой сапропелевого раствора имеют динамическую вязкость 2 Пуаза, в то время как динамическая вязкость цементных растворов, приготовленных на пресной воде затворения без добавки сапропелевого раствора достигает 20 Пуаз, а на соленой воде затворения 30 Пуаз.

2. Изменения динамической вязкости как с добавкой сапропелевого раствора так и без, на соленой и пресной воде затворения при остановке до 60 мин в условиях, приближенным к пластовым, не было замечено.

Из-за отсутствия приборов по определению динамической вязкости растворов не сделаны сравнения свойств тампонажных и буровых растворов, а при оценке качества цементирования в связи с характеристиками растворов оценивали условную вязкость.

4.6 Понятие о критической плотности жидкости и средней плотности тела, находящегося под действием архимедовых сил в практике строительства скважин.

Учет роли архимедовых сил в процессе строительства скважин требует уточнения некоторых положений, встречающихся ныне в практике. Укажем два из них, которые считаем основополагающими.

1. Величина архимедовой силы не зависит от плотности материала, из которого изготовлено тело. Она зависит от объема и плотности жидкости, вытесненной этим телом.

2. Если выталкивающая сила превышает вес тела — оно плавает. При спуске в скважину труб без обратного клапана вытесняется жидкость в объеме металла, из которого изготовлены грубы, а так как плотность металла намного превышает плотность бурового раствора, трубы тонут и трудностей в спуске колонн не возникает.

При спуске труб с обратным клапаном могут создаться условия, при которых трубы начнут плавать в жидкости, которой заполнена скважина и без долива жидкости внутрь труб их не удастся спустить в скважину. При каких диаметрах колонн и глубине их спуска это произойдет легко определить следующим расчетом :

Пусть и — плотность металла и жидкости соответственно, кг/м 3

и — объем металла в 1 п. м труб и объем 1 п. м труб по наружному диаметру, .м 3

L длина труб, м

и Sm

площадь металла в сечении трубы и площадь круга по наружному диаметру трубы, м 2 . Тогда вес труб в воздухе

×= Sm×× L(1)

и выталкивающая сила при закрытом нижнем конце труб и пустой колонне

×= × Sm× L (2)

Для определения величины плотности жидкости, при которой трубы не будут тонуть в скважине приравняем (1) и (2)

× Sm× L=× Sm× L (3)

Назовем полученную из (3) плотность жидкости критической и определим ее из выражения

КР = (4)

Для нижеуказанных диаметров труб при толщине стенки 10 мм и плотности металла 7800 кг/м 3 , критическая плотность жидкости равна

ГЛАВА 8. СТРУКТУРА И СВОЙСТВА ЦЕМЕНТНОГО ТЕСТА И ЗАТВЕРДЕВШЕГО ЦЕМЕНТНОГО КАМНЯ

В результате тщательного смешения цементного порошка с водой, взятой в количестве 25—45 % по массе, получают цементное тесто, называемое иначе пастой. С увеличением количества воды тесто становится подвижнее.

Тесто, изготовленное из цемента или какого-либо другого вяжущего вещества, представляет собой концентрированную водную суспензию, характеризующуюся определенной структурой и соответственно повышенной вязкостью. Такие системы называют вязкопластичными, структурированными.

Возникновение повышенной вязкости относят за счет ван-дер-ваальсовых сил, в той пли иной мере связывающих отдельные высокодисперсные частички в суспензии. Разрушение таких структур наступает, в частности, при механических воздействиях на систему (вибрация, толчки, встряхивание, перемешивание и т. п.). При этом структурная вязкость падает и суспензия приобретает способность течь. При прекращении механических воздействий структурные связи в системе вновь восстанавливаются, вязкость суспензии повышается и текучее состояние исчезает.

Такое явление, характерное для структурированных смесей вяжущих с водой, называется тиксотропиеи. По некоторым данным, в них должны присутствовать частицы размером менее 4 мкм, способные к броуновскому движению и сольватации.

Нормально вязкие системы начинают течь при любом перепаде давления. Чтобы вызвать течение структурированных систем, необходимо приложить дополнительную силу, соответствующую предельному напряжению сдвига. Таким образом, для подобных систем существует предельное значение скорости сдвига, вызывающее переход его из упругопластического состояния в состояние временной текучести.

Структурная вязкость в большой мере зависит как от свойств цементов, так и от концентрации, температуры и продолжительности выдерживания суспензии. Важно отметить, что в зависимости от В/Ц и продолжительности выдерживания теста значительно изменяются характер и время последующего застудневания при прекращении механических воздействий, а также структурная вязкость. Для определения структурной вязкости цементных паст и растворов пользуются вибровискозиметром А. Е. Десова. Вязкость в нем определяют по скорости всплывания шарика диаметром 20,1 мм и массой 2,82 г в трубке, подвергаемой вибрации с заданной частотой и амплитудой.

Читать еще:  Фиброцементная плита состав цемента

На 39 приведены результаты некоторых определений вязкости (Па-с) теста из обычного цемента, а также теста с добавкой пластификатора —омыленного пека в количестве 0,05—0,1 % массы цемента. Пек, являясь поверхностно-активным веществом, способствует значительному уменьшению вязкости цементного теста, а также растворных и бетонных смесей, лучшей их ‘ удобоукладываемости, повышению плотности и, следовательно, их качества. Таким же образом на вязкость действуют добав-^*!

2Ь£д ки СДБ и других ПАВ.

В цементном тесте уже в момент его изготовления начинаются сложные н разнообразные процессы, обусловливающие постепенное превращение пластической массы в затвердевший цементный камень. Структурная вязкость теста во время твердения резко увеличивается. Одновременно тесто приобретает некоторую пластическую прочность. Ее можно характеризовать значением предельного напряжения сдвига, возникающего в тесте при погружении в него под той или иной постоянной нагрузкой конического пластомера МГУ.

Свойства цементного раствора (ЦР)

Водоудерживающая способностьопределяет пределы водосодержания цементного раствора, в которых его свойства удов­летворяют технологическим требованиям. Верхний предел водосодержания ограничивается потерей седиментационной устойчи­вости, нижний предел— ухудшением подвижности ниже допу­стимой для прокачивания при существующих технико-техноло­гических условиях цементирования.

Пределы допустимого водосодержания зависят от химиче­ской природы компонентов цементного порошка, степени его дисперсности, величины и конфигурации смачиваемой поверх­ности.

Плотность цементного раствора — функция плотностей су­хого цементного порошка, вводимых добавок (средневзвешен­ной плотности твердой фазы цементного раствора рт), жидко­сти затворения рж и относительного содержания жидкой и твердой фаз Ж/Т, которое представляет собой отношение массы жидкости к массе твердой части тампонажного раствора. При этом

где ρцр — плотность цементного раствора.

Подвижность цементного растворахарактеризуется растекаемостью по конусу АзНИИ, консистенцией, измеряемой в специальном приборе — консистометре с нормиро­ванными геометрическими размерами стакана и мешалки и реологическими параметрами вязкопластичного тела по Шведову — Бингаму — динамическим напряжением сдвига и пластической вязкостью.

Консистенция – это эффективная вязкость, измеренная при неизвестных, но ограниченных градиенте скорости деформации и напряжении сдвига и неопределенной степени разрушения структуры. В течение инкубационного периода для большинства ТР перемешивание в консистометре обеспечивает, вероятно, степень разрушения структуры, близкую к практически полному разрушению. Однако если структурообразование происходит достаточно быстро, то степень ее разрушения уменьшается и становится неопределенной.

Подвижность свежеприготовленного цементного раствора за­висит от Ж/Т, удельной поверхности твердой фазы, вязкости жидкой фазы и интенсивности перемешивания при приготовле­нии тампонажного раствора.

Подвижность цементного раствора уменьшается во времени, причем первое время в течение инкубацион­ного периода медленно, затем быстро. Скорость ухудшения подвижности увеличивается с повышением температуры.

Седиментационная устойчивостьтампонажного цементного раствора зависит от разности плотностей твердой и жидкой фаз, вязкости жидкой фазы, концентрации твердой фазы в жид­кости (В/Т), степени дисперсности твердой фазы. Для ТЦ Sуд = 320 м 2 /кг, ρ = 3200 кг/м 3 , Ж/Т = 0.45 и u ≈ (1 ÷ 5 ) 10 -6 м/с.

Предельное водоотделение ТР зависит от химико-минералогического состава и дисперсности твердой фазы цементного раствора, а также от температуры и продолжительности перемешивания.


Загрузка.

Водоотдача ТЦР в пористую среду. ТЦР обладают значительно худшей водоудерживающей способно­стью, чем глинистые растворы, и значительно большей водоот­дачей. Условная, измеренная на приборе ВМ-6 и экстраполиро­ванная на 30 мин водоотдача составляет для обычных тампо­нажных цементных растворов 400—900 см 3 . Фактически вся спо­собная к отделению вода отделяется за несколько секунд.

Предельная водоотдача и скорость водоотделения зависят от тех же факторов, что и седиментационное водоотделение, и, кроме того, от перепада давления и плотности упаковки частиц в фильтрационной корке, которая связана с дисперсностью и конфигурацией частиц.

Скорость загустевания и схватывания. Скорость схватывания, измеряемая в покое с помощью иглы Вика, может быть как выше, так и ниже скорости загустевания, измеряемой при непрерывном перемешивании в консистометре. Это зависит от типа процесса структурообразования. При пре­обладании кристаллизационного структурообразования загустевание при перемешивании наступает позднее, чем сроки схваты­вания. При преобладании коагуляционного структурообразования (за счет появления большого количества гидросиликатов кальция) загустевание наступает быстрее, чем сроки схваты­вания.

Свойства цементного камня

Цементным камнем называется пористое твердое тело, об­разующееся при затвердевании ТР.

Разнообразные тампонажные материалы образуют цемент­ные камни с различными свойствами, однако общим для них является изменчивость свойств во времени. При затвердевании всех тампонажных материалов образующийся цементный ка­мень с той или иной скоростью проходит стадии структурообразования и затем деструкции, в ходе которых все свойства це­ментного камня непрерывно изменяются.

Свойства цементного камняявляются функцией пористости,прочности элементов твердой фазы и контактов между ними, дисперсности и морфологии частиц твердой фазы.

Читать еще:  Как рассчитать количество цемента для фундамента дома

Пори­стость зависит от исходного водоцементного отношения, со­става новообразований, их удельного объема и степени гид­ратации.

Прочность элементов твердой фазы, прочность контактов между ними, дисперсность и морфология их частиц зависят от их состава и условий образования в твердеющем цементном камне.

Зная степень гид­ратации, удельные объемы соответственно продуктов гидратации, исходного цемента, инертного наполни­теля и жидкости затворения, отношение химически связанной воды к массе цемента, а также отношение массы инертного наполнителя и массы жидкости затворения к массе цемента можно рассчитать пористость или коэффициент пористости.

К эффективной пористости, доступной для фильтрации жид­костей и газов, относятся поры размером более 20 нм.

Прочность цементного камня.Эта характеристика ЦК нестабильна во времени, особенно в условиях повышенных температур. В зависимости от минералогического состава, тонкости помола, исходного водосодержания суспензии кинетика роста прочности ЦК до максимальной величины, максимальная его прочность, момент начала снижения прочности, кинетика снижения прочности изменяются в довольно широких пределах.

Затвердевший цементный камень из базового ТЦ состоит из непрореагировавших остатков ча­стиц ПЦ клинкера, продуктов гидратации, ча­стиц инертных или не вступивших в реакцию остатков частиц активных добавок, воды и пузырьков вовлеченного воздуха. Всегда в том или ином количестве содержится карбонат каль­ция, как продукт карбонизации — реакции взаимодействия про­дуктов гидратации с газообразным или растворенным оксидом углерода (углекислым газом). Могут содержаться также про­дукты взаимодействия продуктов гидратации с другими химиче­ски активными веществами окружающей среды, обычно назы­ваемые продуктами коррозии.

Прочность ЦК на стадии ее роста может быть рассчитана по формуле, учитывающей ко­эффициент, отражающий прочность монокристаллов или их сро­стков, эмпирические коэффициенты, связанные с составом, дисперсностью и морфологией частиц новообразо­ваний, степень гидратации, удельные объемы соответственно исходного цемента, жидкости затворения и инертного наполнителя, а также отношение массы жидкости затвердевания и массы инертного наполнителя к массе цемента. При кавернозной поверхности наполнителя (типа керам­зита), длинноволокнистом армирующем наполнителе, рассчитать прочность по такой формуле невозможно, поскольку в таком случае необходимо введение дополнительных коэффициентов.

Если известен количественный вещественный состав ТЦ, то расчет ожидаемой прочности может быть произведен более точно в соответствии с эмпирическими коэффициентами для главной структурообразующей фазы. Другие новообразования следует относить к наполнителю.

Водопроницаемость цементного камняможет быть ориенти­ровочно вычислена по формуле:

где k коэффициент водопроницаемости, м 2 ; εэф — коэффи­циент эффективной пористости, доли единицы; Rэф — средняя полуширина (средний радиус) эффективных пор, м.

Усадка и набухание в процессе твердения. Цементный ка­мень при твердении в воде несколько увеличивается в объеме, при твердении на воздухе или в другой среде пониженной от­носительной влажности дает усадку.

Как капиллярно-пористое тело ЦК чувствителен к изменению влажности ОС. При неограниченном поступлении воды извне в поровое пространство ЦК в процессе твердения наблюдается некоторое увеличение внешнего объема ЦК, называемое набуханием. Удаление воды из пор ЦК при водит к уменьшению его объема, называемому усадкой. Она связана с капиллярными явлениями, а также сжатием слоистых минералов при удалении межслоевой воды. Усадка, как и набухание, зависит от минералогического состава клинкера и содержания добавок. Склонность к этим деформациям возрастает при увеличении содержания алюмоферритных минералов и тонкодисперсных наполнителей, таких, как глина, диатомит, опока, трепел. В отличие от контракции изменения внешнего объема ЦК больше связаны с явлениями физического, чем химического, характера.

С повышением температуры твердения способность ЦК к усадке и набуханию уменьшается. Некоторые цементы при повышенных температурах твердеют с усадкой даже в воде. Усадочные деформации ЦК тампонажных цементов нежелательны ввиду особой важности его изоляционных функций.

Цементный раствор.

Цементный раствор – это, наверное, самый важный элемент в качественном строительстве. На первый взгляд кажется, что приготовить такую смесь проще простого. По большому счету, это верное предположение. Но, для получения первоклассного цементного раствора стоит очень внимательно подойти к подбору компонентного состава и оптимальной пропорций. Перед тем как познать тонкости получения подобного стройматериала, давайте выясним функции каждого из компонентов в его образовании. Онлайн расчет состава цементного раствора.

Цементно-песчаный раствор.

С технической точки зрения, основу раствора составляет вода. Поэтому, лучше брать чистую без содержания каких-либо примесей воду. Наполнителем в растворе выступает песок, а связывает все компоненты воедино цемент. В процессе получения цементного раствора нужно тщательно подойти к вопросу качества песка. Во-первых, стоит убедиться в отсутствии глины и других пород, мусора. Во-вторых, подобрать правильный посев песка. Например, мелкодисперсный песок лучше использовать для кирпичной кладки, а грубый песок в штукатурных работах может стать причиной дополнительной шлифовки или выравнивания.

Читать еще:  Сырьевые материалы видов цемента

Выбирая цемент нужно учитывать некоторые его особенности. Во-первых, при долгом хранение даже нераспечатанный цемент может закаменеть и стать непригодным к работе. Поэтому, разумнее будет купить цемент перед стартом работ. Во-вторых, цемент должен быть только в бумажной упаковке. Немаловажно подобрать правильную марку цемента в зависимости от вида строительных работ. Например, для фундамента нельзя использовать цемент с маркой ниже М300.

Рассмотрим рекомендации и стандарты приготовление цементно-песчаного раствора в зависимости от вида работ. Цемент марки М400 используется при строительстве массивных цельных строений нужно использовать цемент М400. Если смешать цемент М400 и песок в соотношении 1:2, то получим состав М200. Для отделочных работ, подготовке поверхности к облицовке желательно брать для смеси цемент М400 или М500, песок и воду в соотношении 1:3:0,5. Если увеличить относительную долю цемента в растворе, то можно сократить время затвердения штукатурки. Также хороший результат получают при соотношении цемента, песка и известкового молока 1:5:2 в штукатурных работах, а для половой стяжки – при соотношении 1:2-1:6. При построении рядовых стоячих построек оптимальным является соотношение от 1:3 до 1:6. В быту же популярны пропорции — 1:3 и 1:4.

Свойства цементных растворов.

При работе с кирпичом, например, марки 75 отлично подойдет цементный раствор марки 75 (рабочие пропорции 1:5:3.) Кирпичной кладке можно также придать некий цвет, добавив в раствор сажу. При этом нужно учитывать, что большое количество сажи приводит к уменьшению прочностных характеристик цементного раствора.

Нередко возникает проблема, когда после внесения нужной пропорции воды в цементный раствор он очень сильно теряет в плотности массы. Для повышения вязкости такой смеси нужно добавить немного цемента и песка, сохраняя соотношение их частей.

Для работ по плиточной отделке оптимальный цементно-песчаный раствор соотношением 1:2,4:0,4. При выполнении таких работ важно контролировать плотность смеси. Сделать это весьма просто. Малый объем раствора выкладываем равным слоем на тыльную сторону плитки и пробуем его стряхнуть. Если после таких манипуляций на плитке остался слой толщиной больше 3 мм, то приготовленный высококачественный раствор. При полном отваливании смеси от поверхности стоит немного повысить ее плотность (просто добавить песок и цемент согласно выбранной пропорции). Также технологично правильно увлажнить рабочую сторону плитки цементным молоком (1 часть цемента к 3-4 частям воды).

Цементно-известковый раствор.

Для приготовления цементно-известкового раствора используются цемент и известь (вяжущие компоненты), песок (наполнитель), вода. Очень важно брать свежий цемент, поскольку при долговременном сбережении значительно ухудшаются его свойства. Так, например, после месяца хранения марка М500 понижается в характеристиках до М450. Причем, за полгода хранения цемент может утратить до ¼ своих полезных качеств. Фракция песка должна быть 3-5 мм. При этом подойдет как речной, так и карьерный песок. Например, для штукатурки песок с карьера предпочтительней, поскольку содержащаяся в нем примесь глины делает смесь намного мягче. Чтобы повысить упругость раствора нередко практикуют добавление клея ПВА в соотношении 0,5 л клея на 20 л рабочего раствора. Вместо клея добавлять можно жидкое мыло (0,2 л на 20 л раствора), пластификаторы.

Стоить отметить, что на соотношение компонентов цементно-известкового раствора влияет вид выполняемых работ. Например, штукатурить лучше цементным раствором с пропорцией 1:1:6 или 1:2:9.

Раствор кладочный цементный.

Значительно облегчает подсчет объема компонентов для цементного раствора и выбор соответствующей марки цемента специальные таблицы. Такие таблицы существуют и для приготовления песчано-цементного раствора с учетом типа грунта и их без проблем можно найти на просторах сети.

Таблица содержит соотношения компонентов для различных цементно-известковых растворов.

Для получения качественного кладочного цементного раствора оптимально использовать заранее просеянный песок. Просев на специальном строительном сите позволяет избавится от ненужных камней, грунта и прочих ненужных примесей.

Значительно облегчает процесс получения цементного раствора бетономешальные машины. Последовательность добавления компонентов в мешалку таков: сперва добавляем часть от нужного объёма воды, а дальше, последовательно, цемент и песок. В конце выливаем оставшуюся воду. Сам процесс смешивания длится не меньше 2 минут. По прошествии этого времени можно переливать раствор в ведро или другой рабочий сосуд. Нужно помнить, что цементный раствор быстро затвердевает, поэтому не стоить приготовлять очень большое его количество. Оптимально такое количество цементного раствора, которое можно израсходовать за несколько часов работы. И также не стоит забывать про периодичное перемешивание кладочного цементного раствора во избежании его расслоения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector