Seo-friends.ru

Большая стройка
19 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обжиг клинкера при мокром способе производства цемента

Обжиг клинкера при мокром способе производства цемента

Технологический процесс производства портландцемента включает следующие основные операции: добыча сырьевых материалов; приготовление сырьевой смеси; обжиг сырьевой смеси и получение клинкера; помол клинкера с добавками и получение цемента. Процесс приготовления сырьевой смеси включает операции дробления сырья, тонкого помола, усреднения и корректировки сырьевой смеси.

В зависимости от вида подготовки сырья к обжигу различают мокрый, сухой, полусухой и комбинированный способы производства портландцементного клинкера. При мокром способе производства сырьевые материалы размалываются в воде, а усреднение и корректирование смеси производят с сырьевыми шламами, представляющими водную суспензию тонкодиспергированного сырья с влажностью 32-50%. Далее сырьевой шлам направляется на обжиг во вращающуюся печь.

При сухом способе шихту размалывают в тонкодисперсный порошок, а смешение, усреднение и корректирование производят со смесью в виде сырьевой муки. Далее сырьевая мука направляется на обжиг.

При комбинированном способе сырьевую смесь приготавливают по мокрому, либо по сухому способу. В первом случае сырьевой шлам направляют на обезвоживание в вакуум -фильтры или фильтры — прессы, получают корж или сухарь с остаточной влажностью 16-18% и направляют его на обжиг. Если смесь приготовлена по сухому способу, то сырьевую муку увлажняют до 12-15%, гранулируют и полученные гранулы направляют на обжиг.

Каждый из способов имеет свой преимущества и недостатки. Преимущества сухого способа: 1. Низкий удельный расход тепла на обжиг клинкера. При сухом способе расход тепла на обжиг составляет 2900-3750 кДж/кг клинкера, при мокром –- 5400-6700 кДж/кг. В целом при сухом способе с учётом тепла на подсушку сырьевых материалов расходуется 3100-4400 кДж/кг клинкера.

2. Объём печных газов при сухом способе на 35-40% меньше, чем при мокром способе при одинаковой производительности печи. Вследствие этого затраты на обеспыливание печных газов ниже. При сухом способе имеется возможность использования горячих отходящих газов для сушки сырья при его помоле в шаровых мельницах. Это в свою очередь позволяет дополнительно снизить общий расход тепла на производство клинкера.

3. Печи сухого способа менее металлоемки и материалоёмки, по сравнению с печами мокрого способа такой же производительности. При сухом способе используются короткие печи с циклонными теплообменниками ( Ø 5х75 м; Ø 6,4 ; 7,0х95 м ), а при мокром – длинные печи ( Ø 5х185 м ; Ø 7х230 м ).

4. Печи сухого способа имеют высокую производительность до 3000-5000 т/сут, высокий удельный съём клинкера с 1 м3 печи.
Вследствие этого технологические линии сухого способа в 2-3 раза мощнее линий мокрого способа, повышается
производительность труда, снижаются эксплуатационные
расходы, снижается себестоимость продукции.

5. В условиях недостатка воды (особенно в южных регионах) устраняется необходимость её расхода для приготовления
сырьевого шлама.

Недостатки сухого способа производства:

1. При помоле сухих сырьевых материалов, транспортировке, усреднении и корректировке сырьевой муки происходит выделение значительного количества пыли. Вследствие этого большее пылевыделение при сухом способе требует установки большого числа пылеулавливающих устройств, что увеличивает капитальные затраты на установку фильтров и эксплуатационные – при их обслуживании. При сухом способе сложнее обеспечить необходимые санитарные условия и охрану окружающей среды.

2. Сложность эксплуатации печей сухого способа.
Незначительные колебания в химическом составе сырья, изменение других параметров ( дисперсность, влажность,
температура ) нарушают режим работы печных агрегатов. Печи сухого способа имеют довольно низкий коэффициент использования (КИ) во времени КИ == 0,7-0,8, в то время как печи мокрого способа работают с КИ равным 0,89-0,91.

3. Для обеспечения стабильной работы печей на обжиг должна поступать сырьевая мука ровного состава. Вследствие этого химический состав известняка и глины не должен колебаться в больших пределах, сырьевые материалы должны усредняться на усреднительных складах. Это увеличивает капзатраты на их строительство и эксплуатацию дополнительного оборудования – штабелеукладчики, штабелеразборщики, роторные экскаваторы, транспортёры и т.п.

4. Затраты энергии и труда на помол сухих сырьевых материалов выше, чем при мокром измельчении.

Преимущества мокрого способа производства: 1. Затраты на размол сырья в присутствии воды значительно ниже. Ряд сырьевых материалов (мел, глина) обладают способностью легко размучиваться в воде. В процессе помола сырья пленки воды оказывают расклинивающее действие в микротрещинах диспергируемого материала.

2.Транспортировка, усреднение и корректировка сырьевого шлама осуществляются легче, чем сырьевой муки.

3. При мокром способе образуется меньшее количество пыли,
меньшие затраты на пылеулавливание.

4. Печи мокрого способа просты и надежны в эксплуатации, имеют высокий коэффициент использования.

5. Возможность хорошей гомогенизации шлама, эксплуатационные свойства печей позволяют использовать сырье пестрого химического состава.

Недостатки мокрого способа производства:

1. Высокий удельный расход тепла на обжиг клинкера.

Сырьевой шлам для обеспечения его гидротранспорта должен иметь влажность 34-42%. Для нагревания и испарения такого количества воды требуется 1800-2200 кДж/кг клинкера тепла или 30-35% теплового баланса печи. Вследствие этого длинные вращающиеся печи мокрого способа на половину своей длины работают как сушильные агрегаты. Поэтому эффективность работы таких печей низкая.

2. Низкая производительность печей, их большая метало- и материалоемкость.

3. Низкая производительность труда, большие эксплуатационные затраты, высокая себестоимость продукции.

Комбинированный и полусухой способ по технико-экономическим показателям занимают промежуточное место между сухим и мокрым способом. В целом при этом способе топливные затраты на 20-30% ниже, чем при мокром, но при этом выше трудоемкость производства и расход электроэнергии.

В ряде стран Западной Европы и Японии, ввиду большого расхода топлива мокрый способ полностью отсутствует, все 100% цемента выпускается по экономичному сухому способу. В США, Канаде, многих странах превалирует сухой способ, по которому работают 60-80% заводов. В странах СНГ только около 15% общего объема выпуска цемента осуществляется по сухому способу, а остальное – по мокрому. Во многом это было обусловлено сырьевой базой, где естественная влажность материалов достаточно высока, слабо развитой технической базой отрасли, консервативными взглядами проектировщиков, производственников и ученых, а также доступностью и дешевизной топливных ресурсов в стране.

Долгие годы выбор способа производства цемента определялся свойствами сырья- его однородностью и влажностью. Считалось, что при неоднородном химическом составе сырья и использования мягких высоковлажных пород (мел, глина) предпочтительнее применять мокрый способ. Сухой способ принимался только при общей влажности сырьевой смеси не более 8%, т.к. в противном случае возрастали расходы на сушку материалов. Дальнейшие развитие техники и технологии сухого способа показало, что этот способ эффективен и при общей естественной влажности сырьевой шихты 15% и более, и даже при использовании высоко влажных материалов – мела и глины.

7.5. Обжиг сырьевой смеси и получение клинкера

Образованию конечного продукта — клинкера предшествует ряд физико-химических процессов, в результате которых клинкер приобретает сложные минералогический состав и микрокристаллическую структуру.

Обжиг сырьевой смеси как при сухом, так и при мокром способе производства осуществляется в основном во вращающихся печах. Шахтные печи применяют иногда только при сухом способе. Вращающаяся печь представляет собой длинный, расположенный слегка наклонно цилиндр (барабан), сваренный из листовой стали с огнеупорной футеровкой внутри. Длина печей 95— 185—230 м, диаметр 5—7 м. В нашей стране стали применять вращающиеся печи, работающие по сухому способу, размером 7×95 м, производительностью 3000 т/сут при расходе теплоты на обжиг 3400 кДж/кг. На предприятиях, работающих по мокрому способу производства, применяют печи 7х230 м, производительностью 3000 т/сут при расходе теплоты 5600 кДж/кг. Для улучшения теплообмена внутри печей ближе к верхнему (холодному) концу устраивают цепные завесы, устанавливают теплообменники различной конструкции.

Читать еще:  Приемное устройство для складов цемента

Вращающиеся печи работают по принципу противотока. Сырье в виде порошка (сухой способ) или шлама (мокрый способ) подается автоматическим питателем в печь со стороны ее верхнего (холодного) конца, а со стороны нижнего (горячего) конца вдувается топливо (природный газ, мазут, воздушно-угольная смесь), сгорающее в виде 20—30-метрового факела. Сырье занимает только часть поперечного сечения печи и при ее вращении со скоростью 1—2 об/мин медленно движется к нижнему концу навстречу горячим газам, проходя различные температурные зоны. Выдающийся советский ученый В. Н, Юнг, разработавший основы теории обжига клинкера, условно разделил вращающуюся печь на шесть температурных зон в зависимости от характера протекающих в них процессов. Рассмотрим эти процессы, начиная с поступления сырьевой смеси в печь, т. е. по направлению с верхнего ее конца (холодного) к нижнему (горячему).

В зоне испарения(сушки)происходит высушивание поступившей сырьевой смеси при постепенном повышении температуры с 70 до 200 °С (в конце этой зоны), поэтому первую зону называют еще зоной сушки. Подсушенный материал комкуется, при перекатывании комья распадаются на более мелкие гранулы.

В зоне подогрева, которая следует за зоной сушки сырья, при постепенном нагревании сырья с 200 до 700 °С сгорают находящиеся в нем органические примеси, из глиняных минералов удаляется кристаллохимическая вода (при 450—500 °С) и образуется безводный каолинит Al2О32Si02. Подготовительные зоны (испарения и подогрева) при мокром способе производства занимают 50-60 % длины печи (считая от холодного конца); при сухом же способе подготовка сырья сокращается за счет зоны испарения.

В зоне декарбонизации(ее протяженность 20—23 % длины печи) температура обжигаемого материала поднимается с 700 до 1100 °С; здесь завершается процесс диссоциации карбонатных солей кальция и магния и появляется значительное количество свободного оксида кальция. Термическая диссоциация СаСО3—это эндотермический процесс, идущий с большим поглощением теплоты (1780 кДж на 1 кг СаСОз), поэтому потребление теплоты в третьей зоне печи наибольшее. В этой же зоне происходит распад дегидратированных глинистых минералов на оксиды SiO2, А12Оз, Fе2O3, которые вступают в химическое взаимодействие с СаО. В результате этих реакций, происходящих в твердом состоянии, образуются минералы ЗСаО-А12Оз, СаО-А12Оз и частично 2CaO-SiO2.

В зоне экзотермических реакций(1100—1250 °С) проходят твердофазовые реакции образования ЗСаОА12О3; 4CaO-AI2O3-Fe2O3и белита. Эти экзотермические реакции на сравнительно коротком участке печи (5—7 % ее длины) сопровождаются выделением большого количества теплоты (до 420 кДж на 1 кг клинкера) и интенсивным повышением температуры материала (на 150—200 °С).

В зоне спекания(1300—1450—1300С) температура обжигаемого материала достигает наивысшего значения (1450°С), необходимого для частичного плавления материала и образования главного минерала клинкера — алита. В начале спекания, начиная с 1300 °С, образуется расплав в количестве 20—30 % объема обжигаемой массы из относительно легкоплавких минералов ЗСаО-А12Оз, 4СаО-А12Оз-Fе2Оз, а также MgO и легкоплавких примесей. При повышении температуры до 1450°С в клинкерной жидкости растворяются 2CaO-SiO2и СаО и из них в расплаве происходит образование алита ЗСаО-SiO2, проходящее почти до полного связывания оксида кальция (в клинкере СаОсвобне более 0,5—1 %). В расплаве сначала образуются тетраэдры SiO4 4- , которые потом соединяются с ионами Са 2+ , образуя кристаллическую решетку трехкальциевого силиката. Алит плохо растворяется в расплаве и вследствие этого выделяется из него в виде мелких кристаллов, что влечет дальнейшее растворение в расплаве 2CaO-SiO2и СаО. Процесс образования алита заканчивается за 15—20 мин пребывания материала в зоне спекания (ее протяженность 10—15% длины печи). Поскольку при вращении печи частично расплавленный материал непрерывно перекатывается, мелкие частички слипаются в гранулы. Понижение температуры с 1450 до 1300°С вызывает кристаллизацию из расплава ЗСаО-А12Оз, 4СаОА12Оз-Fе2Оз и MgO (в виде периклаза), которая заканчивается в зоне охлаждения, следующей за спеканием.

В зоне охлаждениятемпература клинкера понижается с 1300 до 1000 °С; здесь полностью формируются его структура и состав, включающий алит С3S, белит C2S, C3A, C4AF, MgO (периклаз), стекловидную фазу и второстепенные составляющие.

Цементный клинкер выходит из вращающейся печи в виде мелких камнеподобных зерен — гранул темно-серого или зеленовато-серого цвета. По выходе из печи клинкер интенсивно охлаждается с 1000 до 100—200 °С в колосниковых, рекуператорных и других холодильниках воздухом, идущим навстречу клинкеру или просасываемым через слой горячего клинкера. После этого клинкер выдерживается на складе одну-две недели.

Сухой способ производства цемента в последние годы значительно усовершенствован. Наиболее энергоемкий процесс — декарбонизация сырья — вынесен из вращающейся печи в специальное устройство — реактор-декарбонизатор, в котором он протекает быстрее и с использованием теплоты отходящих газов.

Из расходных силосов сырьевая мука сначала поступает в систему циклонных теплообменников, где, находясь во взвешенном состоянии, нагревается движущимися навстречу (снизу-вверх) отходящими газами и уже горячей подается в декарбонизатор. Непосредственно в декарбонизаторе сжигают около 50 % топлива, что позволяет быстро и почти полностью (на 90 %) завершить разложение СаСОз. Остальная часть топлива сжигается, как обычно, в горячем конце вращающейся печи, в которой получают клинкер из уже подготовленной к обжигу, т. е. декарбонизированной, сырьевой муки. Теплообменное устройство с декарбонизатором устанавливают около печи.

Повсеместное распространение сухого способа производства с применением декарбонизатора обусловлено возможностью ускорить технологический процесс, повысить суточную производительность технологических линий до 3000 т клинкера, использовать теплоту газов, отходящих из печи и холодильника, и тем самым снизить затраты топливно-энергетических ресурсов. При системе декарбонизатор—печь сокращается примерно вдвое длина вращающейся печи, компоновка цементного завода получается более компактной, соответственно уменьшается потребность в земельных площадях.

В СССР открыт новый способ производства портландцемента — путем обжига клинкера в солевом растворе хлоридов. При этом способе основная реакционная среда в печи (силикатный расплав) заменена солевым расплавом на основе хлорида кальция. В солевом расплаве ускоряется растворение основных клинкерообразующих оксидов (CaO, SiO2, А12Оз, Fe2O3) и образование минералов завершается при 1100—1150 °С вместо обычных 1400—1500 °С, что существенно снижает энергоемкость получения цементного клинкера. Полученный клинкер, наряду с алитом, содержит минерал – хлорсодержащий аналог алита, названный алинитом. Алинит — это высокоосновный А1—С1— силикат кальция, содержащий около 2,5 % хлорида. Клинкер, синтезированный в солевом расплаве, размалывается в 3—4 раза легче, чем обычный. Это позволяет снизить электрозатраты на помол и увеличить производительность цементных мельниц. При этом сокращается число помольных агрегатов. Алинитовый цемент быстрее гидратируется в начальные сроки. Технология нового цемента осваивается на цементных заводах. Сейчас глубоко изучаются коррозионная стойкость бетона на этом цементе и поведение стальной арматуры в бетоне с учетом наличия в нем хлора. Все это позволит определить рациональные области применения алинитового цемента.

Читать еще:  Жидкое стекло цемент бинт

Портал о цементе и бетоне.

Обжиг цемента. Клинкер
Процессы происходящие при обжиге смеси
Обжиг тонкоизмельченной и хорошо гомогенизированной сырье­вой смеси заданного состава в специальных обжиговых агрегатах является важнейшей составной частью производства цемента. В результате обжига сырьевой смеси получается цементный клинкер, содержащий в основном известь и кремнезем, а также глинозем и окись железа, находящиеся в виде силикатов, алюминатов tf-алюмоферритов кальция.

Свойства портландцемента как вяжущего материала обусловли­ваются» свойствами составляющих его минералов, основными из ко­торых являются трехкальциевый силикат (C3S), двухкальциевый силикат (C2S), алюмоферриты кальция переменного состава (qt i C8A3F до C2F), алюминаты кальция (СзА и С5А3). Кроме того, в клинкере могут находиться и другие минералы, присутствие которых будет обусловливаться наличием тех или иных примесей в сырье.
Образованию конечного продукта-портландцементного клинкера предшествует ряд физико-химических и теплотехнических процессов, которые протекают в определенных температурных границах — технологических зонах печного агрегата. При мокром способе производства шлам с влажностью от 28 до 50% поступает в так называемую зону испарения влаги. Часть зоны испарения влаги шлама обычно оснащается цепными завесами с целью интенсификации процесса сушки. В процессе нагревания и испарения влаги происходит загустева* ние шлама, и при некоторой вязкости шлама в цепных завесах обра­зуются гранулы, которые выходят с влажностью 6—12% и темпера­турой порядка 90—-100° С. Расход тепла на испарение влаги шлама в зависимости от спо­соба производства, т. е. от влажности сырьевой смеси или гранул, поступающих в печь, колеблется от 20 до 650 ккал/кг клинкера и составляет при мокром способе производства более одной трети от об­щих затрат тепла на обжиг. Газовый поток поступает в зону испарения влаги с температурой 800—1000° С и покивает печь с температурой 150° С или несколько выше.

Потери тепла с отходящими газами на лучших современных печах не превышают 150 ккал/кг клинкера. В следующей зоне печи — подогрева и дегидратации — материал нагревается от 90—100 до 600° С. При температуре 450° С и выше на­чинаются дегидратация и процесс разложения каолинового ядра глинистого компонента на SiOa и AI2O3, a также декарбонизация углекислого магния.
На этом участке печи обычно устанавливаются металлические или керамические теплообменники, кото­рые улучшают процесс передачи тепла и снижают температурный перепад между газами и материалом. Участок печи, где происходит разложение карбонатной составляющей,—так называемая зона декар­бонизации, является с теплотехнической точки зрения главной зоной печи с максимальным потреблением тепла. Процесс разложения карбоната кальция начинается при температуре около 600° С и ускоряется по мере повышения температуры материала, достигая максимума при 900 С.

В интервале температур 800—1000° С из глинозема глинистого компонента и свободной извести образуется моноалюминат кальция^ (СА), который при более высокой температуре реагирует с окисыо§ кальция и образует вначале С5А3, а’затем и С3А. Взаимодействие окиси железа с окисью кальция начинается Щ температуре 800-—900° С с образованием CjF, который при-более высокой температуре вступает во взаимодействие с алюминатами кальция.
Для более полного прохождения твердофазовых реакций, протекающих, как известно, в местах контактов зерен взаимодействующих компонентов, имеют весьма существенное значение такие факторы, как тонкость помола и однородность сырьевой смеси.
.При плохой гомогенизации и крупном помоле смеси образовав­шиеся в результате разложения СаСОз зародышевые кристаллы извести могут остаться в свободном виде и вследствие рекристаллнза*-ции не могут быстро взаимодействовать с другими окислами.
Расход тепла на разложение известнякового компонента и водогрее сырьевой смеси от 900 до 1250—1300° С составляет 550—650 ккал/кг клинкера. Все процессы так называемого «белитового периода» обжига клинкера можно значительно ускорить путем увеличения температурного напора на 150—200° С. В зоне экзотермических реакций за счет выделения тепла (примерно 100 ккал/кг клинкера) при реакциях образования двухкальциевого силиката, алюминатов и алюмоферритов кальция температур ра материала резко повышается от 1100 до 1300° С и выше. Вместе с тем в этой зоне часть материалов начинает расплавляться и вслед- ? ствие имеющих место диффузионных процессов происходит насыщение ранее образовавшихся зерен P-C2S до трехкальциевого силиката. Образование алита .заканчивается в интервале температур 1300— 1450° С. По данным последних исследовании советских и зарубежных ученых можно представить себе механизм образования алита в результате растворения окиси кальция и двухкальциевого силиката в жидкой фазе с последующей кристаллизацией алита или в результате диффузии молекул окиси кальция в расплаве к кристаллам двухкальциевого силиката, т. е. взаимодействием в твердой фазе. Время полного усвоения окиси кальция и образования алита в зоне спекания исчисляется в действующих, печах от 10 до 25 мин.
Этот участок печи и располагающаяся здесь же зона горения топлива являются самой ответственной частью печи, так как от правильной организации процесса сжигания топлива и дальнейшего использования тепла продуктов сгорания зависят расход тепла на обжиг и качество клинкера’.
В зайисимости от времени пребывания клинкера при высоких температурах, а также скорости охлаждения клинкера кристаллы его могут имеет различные размеры.
Кристаллическая структура клинкера оказывает существенное влияние на прочностные Показатели. Установлена; что мелкокристаллическая структураypa клинкера позволяет яри прочих равных условия!: получать цементы более высоких прочностей. ; Процесс охлаждения клинкера в самой печи и в холодильниках щахт большое значение как с теплотехнической, так и с технологи­ческой точки зрения. Обычно в зоне охлаждения, расположенной в самой печи, температура клинкера снижается до 1100—1350° С, а в холодильниках в зависимости от нх конструкции — до 50—300е С. Вторичный воздух, охлаждающий клинкер, нагревается до 600— 800° С ним возвращается в печь 200—270 ккал/кг клинкера. Следовательно, эффективное охлаждение клинкера приводит к значительной экономии тепла и повышению температуры горения топлива.
Быстрое охлаждение клинкера препятствует разложению алита, находящегося в метастабильном состоянии в интервале температур 1200—1250° С, способствует фиксации жидкой фазы в стекловидном состояния и мелкой кристаллизации клинкерных минералов, мешает выделению примесей из минералов и росту самих кристаллов.

Последовательно пройдя все стадий тепловой обработки, полученный полу­фабрикат (клинкер) выгружается из печи в холодильное устройство и далее транспортером подается в клинкерный склад. Вращающиеся печи состоят из сле­дующих основных элементов: корпуса с бандажами и венцовой шестерней, привода, роликоопор, теплообменников, холодной и горячей головок с уплотнительными устройствами Корпуса вращающихся печей изготовляли клепаными, а теперь они полностью сварной конструкции.Это дает экономию металла и обеспечивает герметичность швов. В месте установки бандажей участок обечайки изготовляется из более толстого сталь­ного листа. Для печей с диаметром кор­пуса до 4 м бандажи изготавливают цельнолитыми, а для печей больших диаметров — сварными из двух поло­вин. Примерно на середине печи уста­навливается венцовая шестерня, приво­димая во вращение электродвигателем через редуктор. Кроме основного рабо­чего двигателя привода имеется вспо­могательный, который обеспечивает вра­щение печи в случае внезапного выхода из строя основного привода. Бандажи опираются на роликовые опоры, смонтированные на металлической раме, которая установлена на массив­ном железобетонном фундаменте.

Читать еще:  Цементная стяжка пола от машин

В местах соединения корпуса вра­щающейся печй с пыльной камерой и горячей головкой создается уплотнение с целью устранения подсосов холодного наружного воздуха.
В цементной промышленности для обжига клинкера применяются печи различной производительности и конст­рукций. Описание конструкций и основ­ные показатели работы вращающихся печей производительностью до 25 т/ч довольно подробно освещены в технической литературе. В справочнике дается краткое описание печей’ большой мощ-ности, которые в настоящее .время внедряются лв промышленность в качестве основных, агрегатов для обжига» Вращающаяся печь размером 4X150 м. Производительность этой печи составляет 35 т клинкера в час. «Корпус печи сварен из стальных листов толщиной 30 и 32 мм. На корпусе печи установ­лены семь бандажей , которые опираются на роликоопоры. В местах установки бандажей подбандажная обечайка имеет толщину листа 50 мм. На третьей опоре 4 устанавливается упорная стойка с упор­ными роликами из стального литья, которые ограничивают продоль­ное движение вращающейся печи. Привод печи осуществляется от разъемного зубчатого венца 5, который крепится к. корпусу печи с помощью пружинящих прокладок. Толщина листа подвенцоврй обе­чайки составляет 50 мм. Подвенцовая шестерня надевается непосредственно на выходной вал редуктора.
Для увеличения жесткости корпуса печи предусматривается уста­новка колеи жесткости . Сирьевая смесь (жидкотекучий шлам) поступает в загрузочный конец печи , У холодного конца печи расположен цепной фильтр , а далее — гирляндная цепная завеса и металлические Теплообмен­ники . Уловленная в электрофильтрах пыль возвращается в пеяь через специальное устройство на корпусе печи. Горячий клинкер поступает через горячую головку печи в холодильник.

Подшипники опор и ролики снабжены системой водяного охлаждения. Смазка подшипников опор печи — жидкая черпаковая, из мас­ляных ванн подшипников. Смена масла — периодическая централи­зованная. Смазка подшипников упорных роликов, главного редукто­ра, подшипников подвенщэвой шестерни — жидкая циркуляционная, а смазка редуктора вспомогательного привода и венцовой пары —жидкая заливная.

Стальной барабан, состоящий из отдельных обечаек, сваренных из листом в продольном и поперечном направлениях. На корпусе печи закрепляются бандажи опирающиеся на роликоопоры Между четвертой и третьей опорами на корпусе печи крепится шестерни
Клинкер через горячую головку печи В поступает н колосниковый холодильник И Пони спекания печи орпширтся надой с помощью устройств, й комплект печного агрегата входит: колосниковый холодильник ячейковый транспортер для трйпепоргиронаппн клинкера шириной 1000 мм и производительностью 200 т/ч;
весы с вращающимся барабаном для взвешивания клинкера произво­дительностью 120 т/ч; вентилятор высокого давления тнпя ВМ-75/1200-16 производитель­ностью 4000 м*/ч и напором до 1300 мм под. ст. Этот вентилятор применяется дли сжигйнни твердого топлинн, двойной шлимоный Питатель с регулируемой скоростью вращения черпакового колеся. Производительность с емкостью контрольного бачка 500 л;
дымосос типа Д-14 производительностью 270 000 мг/ч и напором 200 мм вод. ст. с электродвигателем мощностью 350 кет. На каждую печь устанавливаются по два дымососа.

Обжиг сырьевой смеси для производства цемента

Мокрый способ производства клинкера. Этот способ целесообразно применять при использовании мягкого и влажного сырья. Измельчение и смешивание известняка или мела и глины осуществляют в воде. Жидкотекучая масса с влажностью 35–45 % называется шламом.

Глину перерабатывают в водную суспензию в глиноболтушках и подают совместно с дробленным известняком или мелом и корректирующими добавками в шаровую мельницу, где производится смешивание и помол. Далее известняково-глиняный шлам подается в резервуары для хранения.

При комбинированном способе переработка сырья осуществляется по мокрому способу. Перед обжигом шлам обезвоживается центрифугированием, сгущением в циклонах, фильтрацией до влажности 16–18 %, что позволяет уменьшиь расход топлива на 20–30 %.

Обжиг сырьевой смеси при мокром и комбинированных способах производства осуществляется в основном во вращающихся печах. Длина печей 150–230 м, диаметр 5–7 м. Располагаются они с уклоном. Работают по принципу противотока. С верхнего конца поступает шлам. С нижнего подается топливо – газ, мазут или молотый уголь, которые сгорают в виде 20–30 –метрового факела, создавая температуру до 1450 оС.

Cырье в печи, которая вращается со скоростью 1–2 об/мин, движется к нижнему концу навстречу горячим газам, проходя зоны с различными температурами. Условно выделяют шесть зон: 1 – испарения, 2 – подогрева и дегидратации, 3 – декарбонизации, 4 – экзотермических реакций, 5 –– спекания, 6 – охлаждения.

В зоне испарения при температуре от 70 до 200 оС происходит удаление свободной воды, материал комкуется, а затем распадается на более мелкие частицы.

В зоне подогрева и дегидратации при температуре от 200 до 700 оС выгорают органические примеси и начинается дегидратация каолинита и других глинистых минералов. Образуется каолинитовый ангидрид.

В зоне декарбонизации в интервале температур 900–1200 оС происходит диссоциация углекислого кальция с образованием свободного оксида кальция CaO и продолжается разложение глинистых минералов на оксиды SiO2, Al2O3 и Fe2O3.

В зоне экзотермических реакций при температуре 1200–1300 оС происходит ускорение реакций в твердом состоянии с выделением теплоты.

В зоне спекания при температуре 1350–1450–1300 оС образуется 20–30 % расплава. В него вначале переходят C3A, C4AF, CaO и MgO, а потом и С2S. Затем С2S вступает во взаимодействие с CaO, и образуется основной минерал цементного клинкера C3S. Он плохо растворяется в расплаве и выделяется в виде кристаллов. При понижении температуры до 1300 оС жидкая фаза затвердевает, образуя кристаллы C3A, C4AF, и MgO и частично – стекла. Этот процесс продолжается и в следующей зоне.

В зоне охлаждения при температуре 1300–1000 оС заканчиваются все процессы и формируется состав клинкера из кристаллов и стекловидной фазы, состоящей из C3A и C4AF.

Затем клинкер охлаждается до температуры 100–200 оС и выдерживается на складе около двух недель. Внешне он представляет собой камневидные зерна размером до 40 мм.

Сухой способ производства клинкера. Сухой способ приготовления клинкера применяется при влажности сырьевых материалов до 10–15 %. Исходные материалы – известняк и глина – дробятся, а затем загружаются в мельницы шаровые, валковые или мельницы самоизмельчения “Аэрофол”, где совмещается измельчение и сушка отходящими газами. Просушивание сырья может выполняться в дробилках.

Полученная сырьевая мука вначале подвергается предварительной тепловой обработке при температуре до 800–850 оС в циклонных теплообменниках, а дальше–в специальных реакторах при температуре 920–950 оС. В них происходит декарбонизация до 85–90 %. Обжигают сырьевую муку при температуре 1450 оС в коротких вращающихся печах, где завершаются процессы клинкерообразования.

Поможем написать любую работу на аналогичную тему

Обжиг сырьевой смеси для производства цемента

Обжиг сырьевой смеси для производства цемента

Обжиг сырьевой смеси для производства цемента

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты