Seo-friends.ru

Большая стройка
264 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Процесс разбуривания цементных мостов

Большая Энциклопедия Нефти и Газа

Разбуривание — цементная пробка

С учетом удовлетворения потребности буровых предприятий в режущих долотах разработан типаж режущих долот, предусматривающий долота пяти типов: 2Л — долота двухлопастные; ЗЛ — долота трехлопастные с обычной и гидромониторной промывкой; П — долота пикообраз-ные для разбуривания цементных пробок и расширения ствола скважины; ИР — долота истирающие-режущие с обычной и гидромониторной промывкой; ФР — долота-фрезеры. [46]

Она отличается от установок для текущего ремонта наличием второго барабана, оснащенного канатом диаметром 13 мм для проведения тартальных и свабовых работ при освоении скважин ( работ по снижению уровня жидкости методом порционного отбора ее из скважины); ротора с гидроприводом для разбуривания цементных пробок в обсадных 142 — 168-мм трубах и узла трансмиссии, обеспечивающего возможность отбора мощности при помощи карданного вала на блочную насосную установку. [48]

В разделе Крепление скважин учитываются затраты времени на промывку и проработку ствола скважины перед спуском колонны ( кондуктора, промежуточной, эксплуатационной); подготовительные работы перед спуском обсадных труб ( укладка труб, замер, опрессовка, шаблонирование); спуск обсадных колонн; промывку перед заливкой цемента; подготовительно-заключительные работы к цементированию колонн; цементирование; ожидание затвердения цемента ( ОЗЦ); разбуривание цементной пробки в колонне; опрессовку колонны на герметичность. [49]

Нормативное время на вид ремонта формируется в зависимости от выполняемых технологических операции, сгруппированных следующим образом: 74 — переезд к скважине; Т % — подготовка скважины к ремонту, включая глушение; Тз — подготовительно-заключительные и вспомогательные работы; Tt — освоение скважин с применением компрессора; Г5 — определение притока жидкости; Те — заливка цементного раствора в пласт; Г7 — ожидание затвердевания цемента; Г8 — разбуривание цементной пробки ; Тй — исследовательские работы с использованием акустического каротажа; Тю — исследовательские работы с использованием радиоактивного каротажа ( РК, НГК. [50]

В зависимости от глубины скважины разбуривают или со станка, или с подъемника. Разбуривание цементной пробки ротором требует применения бурильных труб, подвода электроэнергии, а также выполнения других вспомогательных операций, усложняющих и удорожающих работу по освобождению от пробки. [51]

Бурение скважины ведут обычным образом до кровли продуктивного пласта, затем спускают и цементируют колонну обсадных труб. После разбуривания цементной пробки понижают уровень промывочной жидкости настолько, чтобы давление ее столба не превышало ожидаемое давление в продуктивном пласте. Затем его разбуривают с созданием местной циркуляции с использованием ингибированного раствора или раствора на углеводородной основе, после чего спускают перфорированный хвостовик. [52]

Агрессивное воздействие ионов Са2 на глинистый раствор наиболее опасно, если в нем содержится большое количество глинистых частиц. Поэтому перед разбуриванием цементных пробок рекомендуется снизить содержание последних. [53]

Загрязнение промывочного раствора цементом не связано непосредственно с геологическими условиями. Обычно оно происходит при разбуривании цементных пробок , мостов, искусственно создаваемых в стволе скважины с различными целями. Наиболее опасна при этом остановка циркуляции промывочной жидкости ( СПО, каротаж, простои) из-за возможности быстрого загустева-ния и даже твердения раствора, содержащего активные непро-гидратировавшие частицы цемента, которые, оседая, уплотняются, вызывая прихваты бурового инструмента в скважине. [54]

Кроме того, при цементировке под давлением в некоторых случаях происходит частичное смятие эксплуатационной колонны немного выше дыр фильтра — или в фильтровой части. При этом пикообразное долото ( обычно применяемое для разбуривания цементных пробок ), вращаясь во время разбуривания, может проскакивать мимо такого смятия, в то время как тела, имеющие цилиндрическую форму, например печать, проходить не будут. [55]

Как известно, применение турбобура не требует вращения колонны бурильных труб, и так как 5 турбобур развивает небольшой крутящий момент, то для его работы в скважинах не требуется специальная подводка бурильных труб, ибо турбобур может работать на тех же насосно-компрессорных трубах, на которых производилась заливка. Это обстоятельство в значительной степени расширяет область применения турбобура при разбуривании цементных пробок . [56]

Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.

Одна из серьезных разновидностей технологии процесса це­ментирования — установка цементных мостов различного на­значения. Повышение качества цементных мостов и эффективности их работы — неотъемлемая часть совершенствования процессов бу­рения, заканчивания и эксплуатации скважин. Качеством мос­тов, их долговечностью определяется также надежность охра­ны недр окружающей среды. Вместе с тем промысловые дан­ные свидетельствуют, что часто отмечаются случаи установки низкопрочных и негерметичных мостов, преждевременного схватывания цементного раствора, прихвата колонных труб и т.д. Эти осложнения обусловлены не только и не столько свойст­вами применяемых тампонажных материалов, сколько специ­фикой самих работ при установке мостов.

В глубоких высокотемпературных скважинах при проведе­нии указанных работ довольно часто происходят аварии, свя­занные с интенсивным загустеванием и схватыванием смеси глинистого и цементного растворов. В некоторых случаях мос­ты оказываются негерметичными или недостаточно прочными. Успешная установка мостов зависит от многих природных и технических факторов, обусловливающих особенности форми­рования цементного камня, а также контакт и «сцепление» его с горными породами и металлом труб. Поэтому оценка несущей способности моста как инженерного сооружения и изучение условий, существующих в скважине, обязательны при прове­дении этих работ.

Цель установки мостов — получение устойчивого водогазонефтенепроницаемого стакана цементного камня определенной прочности для перехода на вышележащий горизонт, забуривания нового ствола, укрепления неустойчивой и кавернозной ча­сти ствола скважины, опробования горизонта с помощью испы­тателя пластов, капитального ремонта и консервации или лик­видации скважин.

По характеру действующих нагрузок можно выделить две категории мостов:

1) испытывающих давление жидкости или газа и 2) испытывающих нагрузку от веса инструмента во время забуривания второго ствола, применения испытателя пластов или в других случаях (мосты, этой категории, должны помимо газоводонепроницаемости обладать весьма высокой механичес­кой прочностью).

Анализ промысловых данных показывает, что на мосты мо­гут создаваться давления до 85 МПа, осевые нагрузки до 2100 кН и возникают напряжения сдвига на 1 м длины моста до 30 МПа. Такие значительные нагрузки возникают при опробо­вании скважин с помощью испытателей пластов и при других видах работ.

Несущая способность цементных мостов в значительной мере зависит от их высоты, наличия (или отсутствия) и состояния глинистой корки или остатков бурового раствора на колонне. При удалении рыхлой части глинистой корки напряжение сдвига составляет 0,15-0,2 МПа. В этом случае даже при воз­никновении максимальных нагрузок достаточна высота моста 18-25 м. Наличие на стенках колонны слоя бурового (глинис­того) раствора толщиной 1-2 мм приводит к уменьшению на­пряжения сдвига и к увеличению необходимой высоты до180-250 м. В связи с этим высоту моста следует рассчитывать по формуле Нм ≥ Но – Qм/пDc [τм] (1) где Н0 — глубина установки нижней части моста; QM — осевая нагрузка на мост, обусловливаемая перепадом давления и раз­грузкой колонны труб или испытателя пластов; Dс — диаметр скважины; [τм] — удельная несущая способность моста, значе­ния которой определяются как адгезионными свойствами тампонажного материала, так и способом установки моста. Герметичность моста также зависит от его высоты и состоя­ния поверхности контакта, так как давление, при котором про­исходит прорыв воды, прямо пропорционально длине и обратно пропорционально толщине корки. При наличии между обсадной колонной и цементным камнем глинистой корки с напряжением сдвига 6,8-4,6 МПа, толщиной 3-12 мм градиент давления прорыва воды составляет соответственно 1,8 и 0,6 МПа на 1 м. При отсутствии корки прорыв воды происходит при градиенте давления более 7,0 МПа на 1 м.

Читать еще:  Легкий саман с цементом

Следовательно, герметичность моста в значительной мере зависит также от условий и способа его установки. В связи с этим высоту цементного моста следует также определять и из выражения

Нм ≥ Но – Рм/[∆р] (2) где Рм максимальная величина перепада давлений, действу­ющего на мост при его эксплуатации; [∆р] — допустимый гради­ент давления прорыва флюида по зоне контакта моста со стен­кой скважины; эту величину также определяют в основном в зависимости от способа установки моста, от применяемых тампонажных материалов. Из значений высоты цементных мостов, определенных по формулам (1) и (2), выбирают большее.

Установка моста имеет много общего с процессом цементиро­вания колонн и обладает особенностями, которые сводятся к следующему:

1) используется малое количество тампонажных материа­лов;

2) нижняя часть заливочных труб ничем не оборудуется, стоп-кольцо не устанавливается;

3) не применяются резиновые разделительные пробки;

4) во многих случаях производится обратная промывка скважин для «срезки» кровли моста;

5) мост ничем не ограничен снизу и может растекаться под действием разности плотностей цементного и бурового раство­ров.

Установка моста — простая по замыслу и способу проведения операция, которая в глубоких скважинах существенно ослож­няется под действием таких факторов, как температура, давле­ние, газоводонефтепроявления и др. Немаловажное значение имеют также длина, диаметр и конфигурация заливочных труб, реологические свойства цементного и бурового растворов, чистота ствола скважины и режимы движения нисходящего и восходящего потоков. На установку моста в не обсаженной части скважины значительное влияние оказывает кавернозность ствола.

Цементные мосты должны быть достаточно прочными. Практика работ показывает, что если при испытании на проч­ность мост не разрушается при создании на него удельной осевой нагрузки 3,0-6,0 МПа и одновременной промывки, то его прочностные свойства удовлетворяют условиям как забуривания нового ствола, так и нагружения от веса колонны труб или испытателя пластов.

При установке мостов для забуривания нового ствола к ним предъявляется дополнительное требование по высоте. Это обус­ловлено тем, что прочность верхней части (Н1) моста должна обеспечить возможность забуривания нового ствола с допусти­мой интенсивностью искривления, а нижняя часть 0) — на­дежную изоляцию старого ствола. Нм=Н1+Но = (2Dс* Rc ) 0,5 + Но(3)

где Rc радиус искривления ствола.

Анализ имеющихся данных показывает, что получение на­дежных мостов в глубоких скважинах зависит от комплекса одновременно действующих факторов, которые могут быть разде­лены на три группы.

Первая группа — природные факторы: температура, давле­ние и геологические условия (кавернозность, трещиноватость, действие агрессивных вод, водо- и газопроявления и поглоще­ния).

Вторая группа — технологические факторы: скорость движе­ния потоков цементного и бурового растворов в трубах и кольце­вом пространстве, реологические свойства растворов, химичес­кий и минералогический состав вяжущего материала, физико-механические свойства цементного раствора и камня, контракционный эффект тампонажного цемента, сжимаемость бурового раствора, неоднородность плотностей, коагуляция бурового раствора при смешении его с цементным (образование высоко­вязких паст), величина кольцевого зазора и эксцентричность расположения труб в скважине, время контакта буферной жид­кости и цементного раствора с глинистой коркой.

Третья группа — субъективные факторы: использование не­приемлемых для данных условий тампонажных материалов; неправильный подбор рецептуры раствора в лаборатории; недо­статочная подготовка ствола скважины и использование бурово­го раствора с высокими значениями вязкости, СНС и водоотда­чи; ошибки при определении количества продавочной жидкос­ти, места расположения заливочного инструмента, дозировки реагентов для затворения цементного раствора на скважине; применение недостаточного числа цементировочных агрегатов; применение недостаточного количества цемента; низкая сте­пень организации процесса установки моста.

Увеличение температуры и давления способствует интен­сивному ускорению всех химических реакций, вызывая быст­рое загустевание (потерю прокачиваемости) и схватывание там­понажных растворов, которые после кратковременных остано­вок циркуляции иногда невозможно продавить.

До настоящего времени основной способ установки цемент­ных мостов — закачивание в скважину цементного раствора в проектный интервал глубин по колонне труб, спущенной до уровня нижней отметки моста с последующим подъемом этой колонны выше зоны цементирования. Как правило, работы про­водят без разделительных пробок и средств контроля за их движением. Процесс контролируют по объему продавочной жидкости, рассчитываемому из условия равенства уровней це­ментного раствора в колонне труб и кольцевом пространстве, а объем цементного раствора принимают равным объему скважи­ны в интервале установки моста. Эффективность способа низка.

Прежде всего следует отметить, что вяжущие материалы, применяемые для цементирования обсадных колонн, пригодны для установки прочных и герметичных мостов. Некачественная установка мостов или вообще их от­сутствие, преждевременное схватывание раствора вяжущих веществ и другие факторы в определенной степени обусловлены неверным подбором рецептуры растворов вяжущих веществ по срокам загустевания (схватывания) или отклонениями от подо­бранной в лаборатории рецептуры, допущенными при приго­товлении раствора вяжущих.

Установлено, что для уменьшения вероятности возникнове­ния осложнений сроки схватывания, а при высоких температу­рах и давлениях сроки загустевания должны превышать про­должительность работ по установке мостов не менее чем на 25 %. В ряде случаев при подборе рецептур растворов вяжущих не учитывают специфики работ по установке мостов, заключаю­щихся в остановке циркуляции для подъема колонны заливоч­ных труб и герметизации устья.

В условиях высоких температур и давления сопротивление сдвигу цементного раствора даже после кратковременных оста­новок (10-20 мин) циркуляции может резко возрасти. Поэтому циркуляцию восстановить не удается и в большинстве случаев колонна заливочных труб оказывается прихваченной. Вследствие этого при подборе рецептуры цементного раство­ра необходимо исследовать динамику его загустевания на кон­систометре (КЦ) по программе, имитирующей процесс уста­новки моста. Время загустевания цементного раствора Тзаг соответствовать условию

Тзаг>Т123+1,5(Т456)+1,2Т7 где T1, Т2, T3 — затраты времени соответственно на приготовле­ние, закачивание и продавливание цементного раствора в сква­жину; Т4, Т5, Т6 — затраты времени на подъем колонны зали­вочных труб до места срезки моста, на герметизацию устья и производство подготовительных работ по срезке моста; Тт — за­траты времени на срезку моста.

По аналогичной программе необходимо исследовать смеси цементного раствора с буровым в соотношении 3:1,1:1 и 1:3 при установке цементных мостов в скважинах с высокими темпера­турой и давлением. Успешность установки цементного моста в значительной степени зависит от точного соблюдения подобранной в лабора­тории рецептуры при приготовлении цементного раствора. Здесь главные условия — выдерживание подобранного содер­жания химических реагентов и.жидкости затворения и водоцементного отношения. Для получения возможно более однородного тампонажного раствора его следует приготовлять с использованием осреднительной емкости.

Читать еще:  Клапан для цемента вам

Добыча нефти и газа

нефть, газ, добыча нефти, бурение, переработка нефти

ОСНОВЫ ТЕХНОЛОГИИ УСТАНОВКИ ЦЕМЕНТНЫХ МОСТОВ

Одна из серьезных разновидностей технологии процесса цементиро­вания — установка цементных мостов различного назначения. Повышение качества цементных мостов и эффективности их работы — неотъемлемая часть совершенствования процессов бурения, заканчивания и эксплуатации скважин. Качеством мостов, их долговечностью определяется также на­дежность охраны недр и окружающей среды. Вместе с тем промысловые данные свидетельствуют, что часто отмечаются случаи установки низко­прочных и негерметичных мостов, преждевременного схватывания це­ментного раствора, прихвата колонны труб и т.д. Эти осложнения обуслов­лены не только и не столько свойствами применяемых тампонажных мате­риалов, сколько спецификой самих работ при установке мостов.

В глубоких высокотемпературных скважинах при проведении указан­ных работ довольно часто происходят аварии, связанные с интенсивным

загустеванием и схватыванием смеси глинистого и цементного растворов. В некоторых случаях мосты оказываются негерметичными или недостаточ­но прочными. Например, только 40 — 50 % мостов, устанавливаемых в глу­боких скважинах Северного Кавказа, являются удачными.

Успешная установка мостов зависит от многих природных и техниче­ских факторов, обусловливающих особенности формирования цементного камня, а также контакт и «сцепление» его с горными породами и металлом труб. Поэтому оценка несущей способности моста как инженерного со­оружения и изучение условий, существующих в скважине, являются обя­зательными при проведении этих работ.

Несмотря на то, что из всех видов операций, связанных с цементиро­ванием скважин, наибольшее число случаев с неудачным или безрезуль­татным исходом приходится на установки мостов, этот вопрос еще недос­таточно освещен в литературе.

Цель установки мостов — получение устойчивого водогазонефтене-проницаемого стакана цементного камня определенной прочности для пе­рехода на вышележащий горизонт, забуривания нового ствола, укрепления неустойчивой и кавернозной части ствола скважины, опробования гори­зонта с помощью испытателя пластов, капитального ремонта и консервации или ликвидации скважин.

По характеру действующих нагрузок можно выделить две категории мостов: испытывающих давление жидкости или газа и испытывающих на­грузку от веса инструмента во время забуривания второго ствола, приме­нения испытателя пластов или в других случаях.

Мосты, относящиеся ко второй категории, должны, помимо газоводо­непроницаемости, обладать весьма высокой механической прочностью.

Анализ промысловых данных показывает, что давления на мосты могут составлять до 85 МПа, осевые нагрузки — до 2100 кН и возникают напря­жения сдвига на 1 м длины моста до 30 МПа. Такие значительные нагрузки возникают при опробовании скважин с помощью испытателей пластов и других видах работ.

Несущая способность цементных мостов в значительной мере зависит от их высоты, наличия (или отсутствия) и состояния глинистой корки или остатков бурового раствора на колонне. При удалении рыхлой части гли­нистой корки напряжение сдвига составляет 0,15 — 0,2 МПа. В этом случае даже при возникновении максимальных нагрузок достаточна высота моста 18 — 25 м. Наличие же на стенках колонны слоя бурового (глинистого) рас­твора толщиной 1—2 мм приводит к уменьшению напряжения сдвига и к увеличению необходимой высоты до 180 — 250 м. В связи с этим высоту моста Нм следует рассчитывать по формуле

Íì≥Í0
— Qì/
πDc[τì], (14.20)

где Ом — осевая нагрузка на мост, обусловливаемая перепадом давления; Dc — диаметр скважины; [хм] — удельная несущая способность моста, ве­личина которой определяется как адгезионными свойствами тампонажного материала, так и способом установки моста; Но — глубина установки ниж­ней части моста.

Герметичность моста также зависит от его высоты и состояния по­верхности контакта, так как давление, при котором происходит прорыв во­ды, прямо пропорционально длине и обратно пропорционально толщине

корки. При наличии между обсадной колонной и цементным камнем гли­нистой корки с напряжением сдвига 6,8 — 4,6 МПа, толщиной 3—12 мм гра­диент давления прорыва воды составляет соответственно 1,8 — 0,6 МПа на 1 м. При отсутствии корки прорыв воды происходит при градиенте давле­ния более 7,0 МПа на 1 м.

Следовательно, герметичность моста в значительной мере зависит также от условий и способа его установки. В связи с этим высоту цемент­ного моста следует определять и из выражения

где рм — максимальная величина перепада давлений, действующего на мост при его эксплуатации; [Ар] — допустимый градиент давления прорыва флюида по зоне контакта моста со стенкой скважины; эту величину опре­деляют в основном в зависимости от способа установки моста, применяе­мых тампонажных материалов.

Из значений высоты цементных мостов, определенных по формулам (14.20 и 14.21), выбирают большее. Ориентировочные значения [хм], [Ар] при установке мостов через заливочную колонну с применением раствора из портландцемента в зависимости от технологии установки приведены в òàáë. 14.4.

Установка мостов производится по балансовому методу, сущность ко­торого состоит в следующем. Спускают до забоя заливочные трубы и про­мывают скважину до выравнивания параметров бурового раствора, затем затворяют и продавливают в трубы цементный раствор. Необходимым ус­ловием при этом является обязательное соответствие плотности продавоч-ного раствора плотности бурового раствора, благодаря чему происходит уравновешивание цементного раствора в трубах и кольцевом пространстве. После продавки трубы поднимают до определенной отметки, а избыточный цементный раствор вымывают обратной промывкой.

Ориентировочные значения [т„] и [Ар]

Условия и технологические мероприятия по установке

С применением скребков и моющих буферных жидко­стей

ГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО ДЛЯ РАЗБУРИВАНИЯ ЦЕМЕНТНЫХ МОСТОВ В СКВАЖИНЕ Российский патент 1994 года по МПК E21B4/02

Описание патента на изобретение RU2007535C1

Изобретение относится к буровой технике, в частности к устройствам вращательного бурения, и предназначается в основном для разбуривания цементных мостов и песчаных пробок в эксплуатационной колонне скважины.

Известен забойный двигатель, включающий объемный двигатель и турбобур, каждый из которых состоит из корпуса и вала, при этом корпус объемного двигателя и корпус турбобура гидравлически связаны между собой патрубком, а их валы кинематически связаны между собой, например, с помощью карданного вала [1] .

Однако этот известный двигатель имеет низкий КПД из-за того, что при размещении объемного двигателя и турбобура на одном валу имеет место торможение скорости вращения вала турбобура.

Наиболее близким по технической сущности и достигаемому результату к устройству является винтовой забойный двигатель, содержащий статор, выполненный в виде стального корпуса, к внутренней поверхности которого привулканизирована резиновая обкладка, имеющая на своей внутренней поверхности винтовые зубья левого направления, и размещенный внутри статора стальной ротор, который имеет наружные винтовые зубья левого направления, число которых на единицу меньше, чем у статора. Зубья ротора и статора находятся в непрерывном контакте между собой, в результате чего происходит разделение полостей высокого и низкого давлений и осуществляется рабочий процесс двигателя [2] .

При прокачивании промывочной жидкости через известный двигатель его ротор совершает планетарное движение относительно оси статора, обкатываясь по зубьям резиновой обкладки. Сам ротор при этом вращется по часовой стрелке. Планетарное движение ротора преобразуется в соосное вращение вал шпинделя при помощи карданного вала, передающего крутящий момент и гидравлическую осевую нагрузку от ротора на долото. В шпинделе известного двигателя размещены резино-металлические нижние опоры и многорядный шариковый радиально-упорный подшипник, воспринимающий гидравлическую и забойную нагрузку.

Читать еще:  Смеси сухие цементные время твердения

Однако известный винтовой забойный двигатель из-за малого диаметра ротора и малой его массы способен развивать на рабочем валу, соединяемом с долотом, крутящий момент ограниченной величины, что снижает эффективность работы известного двигателя, значительно увеличивает время бурения цементного моста в эксплуатационной колонне скважины.

Изобретение обеспечивает повышение эффективности работы устройства за счет увеличения на его валу крутящего момента.

Дополнительно изобретение позволяет увеличить срок его надежной работы при температуре в интервале разбуривания выше 100 о С.

Изобретение также обеспечивает упрощение его эксплуатации за счет обеспечения возможности использования в качестве промывочной жидкости кроме технической воды любой практически доступной жидкости, например, отработанного бурового раствора, сброшенного в амбар после бурения скважин.

Указанные технические результаты достигаются тем, что в известном устройстве, содержащем корпус, размещенный в корпусе и соединенный выходным концом с долотом вал и приводимые вал во вращение рабочие органы, вал по всей длине выполнен полым с открытой с обоих концов вала внутренней полостью, причем рабочие органы для приведения вала во вращение размещены во внутренней полости вала и жестко соединены с ним.

На чертеже представлен общий вид одного из возможных вариантов устройства, продольный разрез.

Устройство содержит корпус 1, внутри которого размещен вал 2, с помощью верхнего 3 и нижнего 4 подшипников. Между корпусом 1 и валом 2 установлен уплотнительный элемент 5. При этом выходной конец вала 2 посредством переводника 6 соединен с долотом 7. Вал 2 по всей длине выполнен полым с открытой с обоих концов внутренней полостью 8, в которой размещены рабочие органы 9, предназначенные для приведения вала во вращение. Рабочие органы 9 при этом жестко прикреплены к внутренней поверхности 10 полого вала 2.

Рабочие органы 9 могут быть выполнены, например, в виде шнека, как изображено на чертеже. Рабочие органы 9 могут быть выполнены также в виде отдельных частей такого шнека или, например, в виде лопаток или винтов пропеллерного типа. В случае выполнения рабочих органов 9 в виде шнека его наружные кромки по всему внешнему винтовому периметру или частично, как показано штриховыми участками на чертеже, но обязательно должны быть жестко соединены с валом 2. Аналогично должно быть осуществлено жесткое соединение с валом 2 рабочих органов 9 в случае выполнения их в виде отдельных частей шнека. При выполнении рабочих органов 9 в виде лопаток (например, длина которых будет выполнена менее внутреннего диаметра вала 2), то каждая такая лопатка ее боковой кромкой должна быть соединена жестко с валом 2.

В случае выполнения рабочих органов 9 в виде винтов пропеллерного типа последние обоими противоположными концами должны быть соединены с валом 2. Корпус 1 устройства своей верхней частью крепится к нижнему концу колонны бурильных труб 11.

Устройство работает следующим образом.

Устройство на колонне бурильных труб 11 опускают в скважину до касания долотом 7 верхней поверхности цементного моста. Приподняв на колонне бурильных труб 11 устройство с долотом над цементной пробкой, как и обычно перед бурением на 20-25 см, по колонне бурильных труб 11 в устройство подают под давлением промывочную жидкость, которая, благодаря выполнению вала полым по всей длине с открытой с обоих концов внутренней полостью, поступает во внутреннюю полость 8 вала 2 и непосредственно на рабочие органы 9 и, пройдя через все рабочие органы, т. е. через всю длину вала 2, а далее — через долото, промывочная жидкость поступает в межколонное пространство ствола скважины. Благодаря тому, что рабочие органы 9 жестко прикреплены к внутренней поверхности 10 полого вала 2, при прохождении под давлением промывочной жидкости по внутренней полости вала 2 через рабочие органы 9 происходит вращение вала 2 и соединенного с ним долота 7 вокруг их продольной оси.

При использовании устройства на его валу, соединенном с долотом, обеспечивается получение крутящего момента, не менее чем в 2-3 раза превосходящего крутящий момент в устройстве по прототипу при одинаковых габаритных размерах устройств.

Конструкция устройства простая. Она содержит небольшое количество деталей, которые сами по себе просты конструктивно, просты в изготовлении и просты в сборке устройства. В устройстве нет резиновых обкладок, которые необходимо было бы, как в прототипе привулканизировать к корпусу устройства. Все детали устройства являются металлическими, они высокопрочны, износостойки и температуростойки. Это позволяет увеличить срок надежной работы устройства при температуре в интервале разбуривания скважины выше 100 о С.

Устройство может работать на промывочной жидкости любой вязкости, включая жидкости высокой вязкости, не требуя при этом жестких регламентированных способов их очистки, т. е. отпадает необходимость в использовании громоздких желобных систем, например, таких, какими оборудуются буровые для очистки бурового раствора от шлама. Поэтому эксплуатация устройства существенно упрощается, т. к. при его работе отпадает необходимость производить тонкую очистку промывочной жидкости.

Устройство позволяет увеличить проходку при разбуривании цементных мостов и снизить трудовые и материальные затраты на разбуривание цементных мостов в скважине за счет сокращения спуско-подъемных операций бурильных труб для промывки ствола скважины после разбуривания цементного моста, т. к. при разбуривании таким устройством уже обеспечивается полный вынос разбуриваемого цемента при использовании в качестве промывочной жидкости, например, вязкого глинистого раствора. Это особенно важно при разбуривании цементных мостов, находящихся в интервале продуктивного пласта, где глубина зумпфа ограничена башмаком эксплуатационной колонны. (56) Авторское свидетельство СССР N 346967, кл. E 21 B 4/02, 1970.

Северинчик Н. А. Машины и оборудование для бурения скважин. — М. : Недра, 1986, с. 119-122.

Похожие патенты RU2007535C1

Иллюстрации к изобретению RU 2 007 535 C1

Реферат патента 1994 года ГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО ДЛЯ РАЗБУРИВАНИЯ ЦЕМЕНТНЫХ МОСТОВ В СКВАЖИНЕ

Использование: бурение и ремонт скважин на нефть и газ. Сущность изобретения: устройство содержит корпус, в котором размещены вал с долотом и рабочие органы. Вал выполнен полым с открытой с двух сторон полостью. Рабочие органы размещены во внутренней полости вала и жестко связаны с ним. 1 ил.

Формула изобретения RU 2 007 535 C1

ГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО ДЛЯ РАЗБУРИВАНИЯ ЦЕМЕНТНЫХ МОСТОВ В СКВАЖИНЕ, включающее корпус, размещенный в корпусе и соединенный выходным концом с долотом вал и приводящие вал во вращение рабочие органы, отличающееся тем, что, с целью повышения эффективности работы устройства за счет увеличения на валу крутящего момента, вал по всей длине выполнен полым с открытой с обоих концов вала внутренней полостью, причем рабочие органы для приведения вала во вращение размещены во внутренней полости вала и жестко соединены с ним.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты